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Abstract 

A new more efficient algorithm for the evaluation of 
the fast rotation function coefficients is derived. 
Its implementation in standard programs is 
straightforward. 

Introduction 

The rotation function (RF) defined by Rossmann & 
Blow (1962) measures the overlap between one Pat- 
terson function and the rotated version of another, 
as a function of the rotation angle. The first codes to 
compute the RF were extremely slow. Later, 
Crowther (1972) showed the advantage of expanding 
the Patterson functions within a spherical domain, in 
terms of spherical harmonics. Indeed, B-sections of 
the RF are calculated with two-dimensional fast 
Fourier transforms. This fast rotation function 
(FRF) takes the form 

o o  / 

R(,~,t~, ~) Y~ Z ' = C..m,D'.. . . ,(~,,  ~ ,  ~'), (1) 
I = 0  m . m ' = - - I  

which is an expansion in terms of the orthonormal 
matrices ' D,,,,,, of the irreducible representations of 
the rotation group. The coefficients C,,,,,,, of this 
expansion depend on the intensities of both crystals 
and on the definition of the spherical domain, but 
not on angular variables. Most of the computing 
time is spent in the calculation of these coefficients so 
that efficient codes are necessary. We will first review 
the existing algorithms, discuss their shortcomings, 
and eventually derive a more efficient one. 

The fast rotation function 

The analysis follows the lines of a previous paper 
(Navaza, 1987; JN hereafter); the starting point is the 
quite general expansion of the Patterson function in 
terms of the spherical harmonics Yzm, 

P(r) = ~ IF.12exp(- 2rriHr) 
H 

oe / 

= ~ ~ c,,,,(r) rlm(r ) (2) 
/ = 0  m =  - /  
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(r = [rl and ~ = r/r stand for the radial and angular 
parts of vector r, respectively). Replacing the 
exponential by its expansion in spherical harmonics 
(Landau & Lifschitz, 1972), 

o o  l 

exp(ipr) = 4,n- ~ ~ i~iz(pr) Y~m(P) Ytm(~)* (3) 
1 = 0  r n =  - 1  

(j, is the spherical Bessel function), we obtain the 
radial functions 

C,m(r) = 4rr Z IF.12(- i)~t(27rHr) Ytm(151) *, (4) 
H 

which are the basis of the FRF. In particular, the 
coefficients ' C,,m, are given by the integral 

b 
/ Cram, = ( 3 /4 " r r ) (b  3 - a3)  - ' fc~(r)cl~,(r)*rZdr.  (5 )  

a 

[a and b denote the inner and outer radii of the 
spherical domain, (t) and (s) stand for the target and 
search crystals, respectively.] Substituting (4) into (5) 
we obtain 

' = 12~rE EIF~h)lZY, m( f t )T ' (n ,K) lF~) l zY~m,(g) ,  (6) C r a m '  

I t  K 

with 
b 

Tt(H,K) = (b 3 - a3)-lfjl(ZTrHr)jt(2~rKr)r2dr. (7) 
a 

Defining the dimensionless quantities ha = 27rHa, hb 
= 2rrHb, ka = 2rrKa, kb = 2rrKb and 6 = b/a, the 
array T' is conveniently written in terms of the 
elementary integral (Watson, 1958) 

I 

U'(h,k) = fj ,(hx)j ,(kx)x2dx 
0 

" [h-  l(h)j~(k)h-jt_ ,(k)j~(h)k]/(k 2 -  h2), 

= i f h ~ k ,  
1 "2 ,~[j,(h)-j,_l(h)j,+~(h)], if h=k.  (8) 

The final result is 

Tt(H,K) = (1 - t~3)-'[Ut(hb,kb) - t~3Ul(ha,ka)]. (9) 

Thus, by replacing (9) into (6), we get a closed 
analytical expression for the coefficients ' C m,,,. This 
involves a summation over a huge number of terms 
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[proportional to (number of vectors H) times 
(number of vectors K)] because the contributions of 
the target and search crystals are entangled by the 
arrays T( It is then crucial that the summations on 
H and K are performed independently of each other, 
which amounts to factorizing U~(h,k). The different 
implementations of the FRF differ precisely in the 
way the factorization is carried out. 

The largest order /max that should be included in 
(1) is approximately related to the outer radius b and 
the resolution of the data d, through 

/ m a x  "z- h m a x  = 2 ' n ' b / d .  (10) 

This criterion is usually obtained by physical con- 
siderations. 

N u m e r i c a l  methods  

Two different procedures have so far been imple- 
mented in the available software. 

Fourier-Bessel expansion 

This is Crowther's original formulation, in which 
j¢(hx) is approximated by the truncated expansion 

N 

j,(hx) - Z b,,,(h)j,(A,,x) (1 l) 
n = l  

(strictly speaking, Crowther proceeded in a different 
but strictly equivalent way). The At, values are the 
zeros ofj~ and the coefficients are (Watson, 1958) 

1 

b,,(h) = 2[f j,(hx)j,( A,,x)x2dx]/j,_ l(A/n) 
0 

! 2j~(h)A~"/[J'-'(A")(h2- A~"2)]' if h a  A,, 

t 1, if h = At.. 

(12) 

The array U ~ is now 
N 

U'(h,k)-  2j,(h)j~(k) Z ab,2/[( h 2 -  A.,2)( k 2 -  A,,2)], 
n = l  

if h. k ~ A~.. (13) 

The characteristics of this approximation have been 
discussed in JN. In particular, we have the possibility 
of choosing a special N for each / and h. The main 
shortcomings are that the series (13) converges every 
slowly and the roots A~, are not available for high l. 
The largest allowed order in the A L M N  code 
(Dodson, 1985) is l = 60, which puts a restriction on 
the radius that can be used with a given resolution. 

Numerical integration 

This procedure consists in evaluating (8) by means 
of a quadrature formula 

1 

Ut(h.k) = f jt(hx)jt(kx)x2dx 
0 

N 

- ~jt(hx,)j l(kx,)xn2w,,  (14) 
n = l  

where x,, and w,, are the integration points and 
weights, respectively. Points and weights of high- 
order quadrature formulas may be easily obtained, 
so that situations with large values of the ratio hma x 
= 2rrb/d may now be considered. The main short- 
coming of this method is that the number of integra- 
tion points may be rather important for high values 
of hma x. The ROTING program written by the author 
is based on this procedure, where an optimal N 
corresponding to a Gauss-Legendre quadrature for- 
mula was determined, as a function of l and hmax, for 
l _  120. As a general rule it gives consistently better 
results than the Fourier-Bessel expansion - with a 
slightly greater computing effort (Alzari & Navaza, 
1991). It is incorporated in the new molecular 
replacement package AMoRe (Navaza, 1992, 1993). 
The success of AMoRe in many cases where standard 
packages failed was because of the good quality of 
the FRF output (Strynadka, Adachi, Jensen, Johns, 
Sielecki, Betzel, Sutoh & James, 1992). 

A new recurrence relat ion 

A new factorization of U ~ may be obtained by using 
the well known recurrence relation between spherical 
Bessel functions, 

j, l (h )=(2 l+ 1)j,(h)/h-j,+~(h), (15) 

to systematically increase the lowest l order in 
expression (8). Two substitutions give the simple 
relation 

U'(h.k)=[j,_ , (h)j , (k)h-j ,_ l(k)j,(h)k]/(k 2 -  h 2) 

= [ - j , +  ,(h)jt(k)h +j,+ ,(k)j,(h)k]/(k 2 -  h 2) 

=(2l  + 3)jr+ ,(h)j,+ ,(k)/(hk)+[j,+ ,(h)j,+ 2(k)h 

-jl+ l(k)jl+ 2(h)k]/(k 2 - h 2) 

=(21+3)j~+,(h)jz+,(k)/(hk)+ U'+2(h,k). (16) 

from which we obtain the desired approximation 
N 

U ( h . k ) -  ~ [2(/+ 2 n ) -  1]j,+2,,_,(h)j,+2,._,(k)/(hk). 

"=' (17) 

and its associated error, U ~+2N. In practice one is 
forced to limit the number of terms in the sum- 
mation. The same criterion (10) that was used to 
neglect all coefficients (6) with l >/max leads us to the 
condition l + 2N =/max + 2, or 

N -  ( / m a x -  l + 2 ) /2 -  (hma x - l + 2)/2. (18) 
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A better estimation of N may be obtained by quanti- 
tatively assessing the errors of the approximation; for 
a given accuracy e, we can find the smallest N such 
that 

I U l+ 2N(h,k)l/fir _< e. (19) 

(fir, the maximum value of U r, is introduced in order 
to work with relative quantities). However, since the 
aim of the factorization is to perform the sum- 
mations on h and k independently of each other, the 
best N we can determine is the smallest one that 
satisfies (19) for every k in [0,hmax]. This gives N as a 
function of l, h and hma×. 

There is another way of estimating the optimal N. 
Let us call h r, the smallest argument of the equation 
Ur(h,h)/ff r = e (see Fig. 1), and choose the smallest N 
such that h / + 2 N > h m a x  . ~  _ Then, using Schwartz's 
inequality [(8) is in fact a scalar product], 

Iu r+ 2N(h,k)l/a' <_ iu  ,+ 2N(h,h)ll/2lU r+ 2N(k,k)l,'2/a r 

urrr+ 2Nz ' r+ e ,Fltr+ )/u~r = Efir+ 2N/fi  r 

-< e, for 0 - h,k <_ hmax --< hre +2N (20) 

[fr+2N___ fr because of (16)]. 
Inspection of Fig. 1 shows that: (18) is a sensible 

estimation; the accuracy is a sharp function of the 
number of terms (adding two more terms makes the 
errors drop by two orders of magnitude);/max may be 
determined as the largest 1 such that IU(h,k)l is 
smaller than a fraction of its maximum value fir, for 
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Fig. i. Smallest argument h~ satisfying U~(h~,h~)/t~ '= e (--e= 
10-4; - - - e =  10 -2) and ~, the maximum value of U ~ (--g~x 
2 x 103). 

every (h,k) in [0,hmax; 0,hmax]. This criterion gives, in 
general, /max > hmax. 

The numerical tests showed that, for a given 
accuracy, the number of terms required by (17) is 
about 30% smaller than that required by a Gauss- 
Legendre numerical integration formula. Compari- 
son with the truncated Fourier-Bessel expansion was 
not performed, because (13) is a poor approximation 
of U r, as demonstrated in JN. 

Concluding remarks 

The advantage of the formula (17) is threefold: (a) 
no quantities other than spherical Bessel functions 
are needed; (b) the number of terms can be easily and 
precisely determined as a function of l and the 
accuracy; (c) it is faster than Gauss-Legendre quad- 
ratures. Moreover, formula (17) may be easily put 
into the existing FRF programs. Indeed, substitution 
of the approximation (17) into (9), and the latter into 
(6), gives 

N 

Clmm ,'-- 12rr(l - $3) -~ ~ [el2,,(b)el2,,,*(b) 
n = l  

- 83el2,,(a)el~,,,,*(a)], (21) 

where 

e,,,,,(x) = [2(/+ 2 n ) -  I]1/2ZIFHI2 Y.dfl  ) 
H 

x jr+ 2.- 1(2rrHx)/(2rrHx), (22) 

with x denoting any radius. Thus, we have simply to 
replace the radial part of the Crm, coefficients in the 
ROTING program by that of the e,,,,,. The optimal 
number of terms is now obtained using the criterion 
(20), which is calculated at each run [this gives a finer 
estimation than criterion (18)], so that there is no 
limit for the ratio hmax = 2rrb/d (the determination of 
the optimal N for numerical integration formulas is 
painful work!). The code has been tested for /max----- 
200. The results are sensibly the same as those 
obtained with the ancient program (for lm.x < 100), 
but the computing time is about 30% shorter. 

Similarly, the A L M N  program may be easily 
modified in order to compute expression (21): the 
radial part of the arm,, coefficients 

arran(X) = 21/2ZlF.12 yrm(lq) 
H 

x j~(2rrHx)h.,,/[(2rHx) 2 - Ar,2], (23) 

must be replaced by that of the corresponding erm,,, 

21/2jt( 2 7r H x )  a r,,/[ ( 2"tr Hx)2  - ,~ rn 2] 

--, [2(l + 2n) - l]l/2jr+ 2,-,(27rHx)/(2rrHx), (24) 

the subindex n now labelling Bessel functions instead 
of roots. The number of terms are now determined 
by (18). 
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